- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
13
- Author / Contributor
- Filter by Author / Creator
-
-
Skorobogatova, Anna (4)
-
Bhattacharya, Arunima (1)
-
De_Lellis, Camillo (1)
-
Drake, Marjorie (1)
-
Fefferman, Charles (1)
-
Ren, Kevin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Drake, Marjorie; Fefferman, Charles; Ren, Kevin; Skorobogatova, Anna (, Advanced Nonlinear Studies)Abstract In this paper, we establish the existence of a bounded, linear extension operator $$T :{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$$when 1 <p< 2 andEis a finite subset of $${\mathbb{R}}^{2}$$contained in a line.more » « lessFree, publicly-accessible full text available April 1, 2026
-
De_Lellis, Camillo; Skorobogatova, Anna (, Ars inveniendi analytica)Free, publicly-accessible full text available January 1, 2026
-
Skorobogatova, Anna (, Communications on Pure and Applied Mathematics)Abstract We show that for an area minimizingm‐dimensional integral currentTof codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most . This provides a strengthening of the existing ‐dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by‐product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximateTalong blow‐up scales.more » « less
An official website of the United States government
